
String Sizing the PVS-500

DC-Coupled Energy Storage System

INTRODUCTION TO THE PVS-500

String sizing the Yaskawa Solectria Solar PVS-500 DC-Coupled Energy Storage System is different than the traditional 1:1 combiner-to-string-inverter pairing. The Solectria PVS-500 DC-Coupled Energy Storage System has the capability to handle a DC/AC ratio of 2.5 and comes with Solectria XGI 1500 inverters, a Heila Edge Plant Master Controller and a bi-directional Dynapower DPS 500 DC/DC converter. Having the energy storage and the PV array on the same inverter allows this DC-coupled system to store the excess PV production in batteries and discharge to the grid at select times and conditions to maximize the value of the system. The PVS-500 consists of 3 synchronized XGI 1500 string inverters that are fed by batteries and up to five PV remote combiner boxes through the Solectria DC Re-Combiner box (see Figure 1).

During normal DC Coupled operation, the daily production (represented by a half sinusoid) can be split into three parts: inverter capacity (red), DC/DC converter capacity (blue) and power excess (cream). Assuming the inverter is able to output its full rated power unrestricted (red, up to the full inverter rating of 500kW), the DC/DC utilization ratio is the overloading of the DC/DC converter with array power that's left after the inverter output. An 80-149% DC/DC utilization would be ideal, however it depends on the use case. DC/DC utilization ratios greater than 100% are represented by the space above the blue area in Figure 2. This is now the excess power that is clipped, similarly to PV only systems with DC/AC ratios greater than 1.

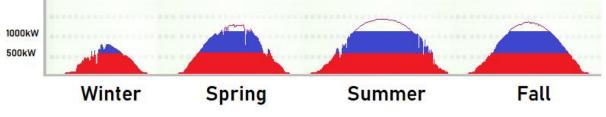


Figure 2 Performance of System with DC/AC Ratio 2.5 Through the Seasons

IT'S PERSONAL

STRING SIZING THE PVS-500 DC COUPLED SOLUTION

String sizing the PVS-500 is similar to any other system with a single MPPT zone. All of the strings must be the same length and, depending on the desired DC/AC ratio, normally 3-5 PV combiner boxes may be utilized.

String sizing may be calculated by hand in the same manner as conducted for a traditional string inverter, or by using the Yaskawa Solectria Solar String Sizing Tool to determine acceptable string lengths (see Figure 3).

Inverter Selection								Electrical Service Specification			
	XGI 1500-166	166									
								Split / Singl	e Phase Thr	ree Phase	
	P YASKAWA			Inverter XGI 1500-166/166 🗸				Δ	C Voltage 600	Vac	
	•	1 23	V _{dc} max	[V] 15	00					✓ V _{ac}	
	- SOLECTRIA	a - 1	V _{dc} min [F	requency 60 Hz		
			40								
		- 8	Max DC-	AC ratio 2.0	0						
	45	-									
	and the second s	anadii									
Estimated AC out		iels ale lateu lo	r your current					Lhave	e read terms and a	agree Show Results	
Estimated AC out 1% DC wire loss i	put power		r your current		Sizing S	Solutions (30 results)	☑ <u>I hav</u>	e read terms and a	agree Show Results	
Estimated AC out 1% DC wire loss i	put power	¹ *P _{AC} [W _{AC}]				Solutions(\$ 2-VMP Hot			e read terms and a	Show Results Suggested Inverters	
Estimated AC out 1% DC wire loss i P STC[WDC] 319680	PPTC[WDC] 284516	¹ *P _{AC} [W _{AC}] 166000 limited	Tot Mods 1332	String Strings 36	Sizing S Mods / String 37	2*VMP Hot 972	VMP Cold 1243	♦ VOC Cold 1496	▲ DC-AC ratio 1.93	Suggested Inverters (1) XGI 1500-166/166	
Stimated AC out We be wire loss i PSTC[WDC] 319680 319680	put power included ◆ P _{PTC} [W _{DC}] 284516 284516	¹⁻ P _{AC} [W _{AC}] 166000 limited 166000 limited	➡ Tot Mods 1332 1332	String Strings 36 37	Sizing S Mods / String 37 36	2*VMP Hot 972 945	VMP Cold 1243 1210	VOC Cold 1496 1456	▲ DC-AC ratio 1.93 1.93	Suggested Inverters (1) XGI 1500-166/166 (1) XGI 1500-166/166	
Estimated AC out, 1% DC wire loss i P _{STC} [W _{DC}] 319680 319680 319200	put power included ◆ P _{PTC} [W _{DC}] 284516 284516 284088	¹⁻ P _{AC} [W _{AC}] 166000 limited 166000 limited 166000 limited	➡ Tot Mods 1332 1332 1330	Strings	Sizing S Mods / String 37 36 35	2*VMP Hot 972 945 919	VMP Cold 1243 1210 1176	VOC Cold 1496 1456 1415	▲ DC-AC ratio 1.93 1.93 1.92	Suggested Inverters (1) XGI 1500-166/166 (1) XGI 1500-166/166 (1) XGI 1500-166/166	
* P _{STC} [W _{DC}] 319680 319200 318240	put power included	¹⁻ P _{AC} [W _{AC}] 166000 limited 166000 limited 166000 limited 166000 limited	➡ Tot Mods 1332 1332 1330 1326	String	Sizing 3 Mods / String 37 36 35 34	2*VMP Hot 972 945 919 893	VMP Cold 1243 1210 1176 1143	VOC Cold 1496 1456 1415 1375	▲ DC-AC ratio 1.93 1.92 1.92	Suggested Inverters (1) XGI 1500-166/166 (1) XGI 1500-166/166 (1) XGI 1500-166/166 (1) XGI 1500-166/166	
Estimated AC out % DC wire loss i * P STC[WDC] 319680 319680 319200 318240 316800	put power included	¹⁻ P _{AC} [W _{AC}] 166000 limited 166000 limited 166000 limited 166000 limited	◆ Tot Mods 1332 1332 1330 1326 1320	String \$ Strings 36 37 38 39 40	Sizing S Mods / String 37 36 35 34 33		♦ VMP Cold 1243 1210 1176 1143 1109	VOC Cold 1496 1456 1415 1375 1334	▲ DC-AC ratio 1.93 1.93 1.92 1.92 1.91	Suggested Inverters (1) XGI 1500-166/166 (1) XGI 1500-166/166 (1) XGI 1500-166/166 (1) XGI 1500-166/166 (1) XGI 1500-166/166	
Estimated AC out % DC wire loss i P STC[WDC] 319680 319680 319200 318240 316800 311040	put power included ♥ PTC[WDC] 284516 284516 284516 283234 283234 281952 276826	¹⁻ PAC[WAC] 166000 limited 166000 limited 166000 limited 166000 limited 166000 limited	◆ Tot Mods 1332 1332 1330 1326 1320 1296	String \$ strings 36 37 38 39 40 36	Sizing S Mods / String 37 36 35 34 33 36	◆ 2-VMP Hot 972 945 919 893 867 945	♦ VMP Cold 1243 1210 1176 1143 1109 1210	VOC Cold 1496 1456 1415 1375 1334 1456	▲ DC-AC ratio 1.93 1.92 1.92 1.91 1.87	Suggested Inverters (1) XGI 1500-166/166 (1) XGI 1500-166/166 (1) XGI 1500-166/166 (1) XGI 1500-166/166 (1) XGI 1500-166/166	
Estimated AC out % DC wire loss i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	▶ Pptc[Wpc] ▶ Pptc[Wpc] ▶ 284516 ▶ 284516 ▶ 284516 ▶ 284516 ▶ 283234 ▶ 28324 <	¹ *P _{AC} [W _{AC}] 166000 limited 166000 limited 166000 limited 166000 limited 166000 limited 166000 limited	➡ Tot Mods 1332 1332 1330 1326 1320 1296 1295	String	Sizing 3 Mods / String 36 35 34 33 36 37 37 36 37 36 37 37 37 36 37 37 36 37 37 36 37 37 36 37 37 37 37 37 37 37 37 37 37	2-VMP Hot 972 945 919 893 867 945 945 972	VMP Cold 1243 1210 1176 1143 1109 1210 1243	VOC Cold 1496 1456 1415 1375 1334 1456 1496	▲ DC-AC ratio 1.93 1.93 1.92 1.92 1.91 1.87 1.87	Suggested Inverters (1) XGI 1500-166/166 (1) XGI 1500-166/166 (1) XGI 1500-166/166 (1) XGI 1500-166/166 (1) XGI 1500-166/166 (1) XGI 1500-166/166	
Estimated AC out [% DC wire loss i PSTC[Wpc] 319680 319200 319200 319200 318240 318240 318240 318200 310800		^{1-P} Ac[WAc] 166000 limited 166000 limited 166000 limited 166000 limited 166000 limited 166000 limited	➡ Tot Mods 1332 1332 1330 1326 1320 1296 1295 1295	String	Sizing 3 Mods / String 37 36 35 34 33 36 37 35 34 37 35 34 33 36 37 35 34 33 36 37 35 34 37 35 34 37 36 35 37 35 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 37 36 37 36 37 37 36 37 37 36 37 37 36 37 37 35 37 35 37 35 37 35 37 35 37 35 37 35 37 35 37 35 37 35 37 35 35 37 35 35 37 35 37 35 37 35 37 35 37 35 37 35 37 35 37 35 37 35 37 35 37 35 37 35 37 35 37 35 37 35 37 35 35 37 35 37 35 37 35 37 35 37 37 35 37 35 37 35 37 35 37 35 37 35 35 35 35 35 35 35 35 35 35	2-VMP Hot 972 945 919 893 867 945 972 972 919	VMP Cold 1243 1210 1176 1143 1109 1210 1243 1176	VOC Cold 1496 1456 1415 1375 1334 1456 1496 1415	▲ DC-AC ratio 1.93 1.93 1.92 1.92 1.91 1.87 1.87	Suggested Inverters (1) XGI 1500-166/166 (1) XGI 1500-166/166 (1) XGI 1500-166/166 (1) XGI 1500-166/166 (1) XGI 1500-166/166 (1) XGI 1500-166/166 (1) XGI 1500-166/166	
Estimated AC out, % DC wire loss i * P _{STC} [W _{DC}] 319680 319680 319200 318240 318240 318240 31800	▶ Pptc[Wpc] ▶ Pptc[Wpc] ▶ 284516 ▶ 284516 ▶ 284516 ▶ 284516 ▶ 283234 ▶ 28324 <	¹ *P _{AC} [W _{AC}] 166000 limited 166000 limited 166000 limited 166000 limited 166000 limited 166000 limited	➡ Tot Mods 1332 1332 1330 1326 1320 1296 1295	String \$ strings 36 37 38 39 40 36 35 37 38 37 38	Sizing S Mods / String 37 36 35 34 33 36 37 35 34	2-VMP Hot 972 945 919 893 867 945 945 972	VMP Cold 1243 1210 1176 1143 1109 1210 1243	VOC Cold 1496 1456 1415 1375 1334 1456 1496	▲ DC-AC ratio 1.93 1.92 1.92 1.91 1.87 1.87 1.87 1.87	Suggested Inverters (1) XGI 1500-166/166 (1) XGI 1500-166/166	
Estimated AC out % DC wire loss i * P STC[WDC] 319680 319200 318240 318240 318240 318240 318200 310800		^{1-P} Ac[WAc] 166000 limited 166000 limited 166000 limited 166000 limited 166000 limited 166000 limited	➡ Tot Mods 1332 1332 1330 1326 1320 1296 1295 1295	String	Sizing 3 Mods / String 37 36 35 34 33 36 37 35 34 33 35 34 33	2-VMP Hot 972 945 919 893 867 945 972 972 919	VMP Cold 1243 1210 1176 1143 1109 1210 1243 1176	VOC Cold 1496 1456 1415 1375 1334 1456 1496 1415 1375 1334	▲ DC-AC ratio 1.93 1.92 1.92 1.91 1.87 1.87 1.87 1.87 1.87 1.87	Suggested Inverters (1) XGI 1500-166/166 (1) XGI 1500-166/166	
Estimated AC out, 1% DC wire loss is 1% PSTC[Wpc] 319680 319200 319200 319240 319240 319240 319800 310800 310800 310800		¹⁺ P _{AC} [W _{AC}] 166000 limited 166000 limited 166000 limited 166000 limited 166000 limited 166000 limited 166000 limited	➡ Tot Mods 1332 1332 1330 1326 1320 1296 1295 1295 1292	String \$ strings 36 37 38 39 40 36 35 37 38 37 38	Sizing S Mods / String 37 36 35 34 33 36 37 35 34	2-VMP Hot 972 945 919 893 867 945 972 919 893	VMP Cold 1243 1210 1176 1143 1109 1210 1243 1176 1143	♦ VOC Cold 1496 1456 1415 1375 1334 1456 1496 1415 1375	▲ DC-AC ratio 1.93 1.92 1.92 1.91 1.87 1.87 1.87 1.87	Suggested Inverters (1) XGI 1500-166/166 (1) XGI 1500-166/166	
Estimated AC out, % DC wire loss i P STC[WDC] 319680 319680 319680 318240 316800 318240 316800 310800 310080 3008880		¹⁺ P _{AC} [W _{AC}] 166000 limited 166000 limited 166000 limited 166000 limited 166000 limited 166000 limited 166000 limited	➡ Tot Mods 1332 1332 1332 1326 1326 1295 1295 1295 1292 1287	String	Sizing 3 Mods / String 37 36 35 34 33 36 37 35 34 33 35 34 33	 2-VMP Hot 972 945 919 893 867 945 972 919 893 867 	♥ VMP Cold 1243 1210 1176 1143 1109 1210 1243 1176 1143 1109	VOC Cold 1496 1456 1415 1375 1334 1456 1496 1415 1375 1334	▲ DC-AC ratio 1.93 1.92 1.92 1.91 1.87 1.87 1.87 1.87 1.87 1.87	Suggested Inverters (1) XGI 1500-166/166 (1) XGI 1500-166/166	

Iterate through a combination of string lengths and number of strings that results close to the desired DC/AC ratio or total number of modules. Note that the DC Re-Combiner has 5 positions, each with a 400A fuse and disconnect, for a maximum of 5 input PV combiner boxes.

The maximum current per PV input, I_{max} , is listed in the DCR manual at 305 A (Table 1.). There are two methods of calculating maximum current (Imax) in NEC 690.8(A)(1)(a), one being Isc x 1.25.

Table 1 Re-Combiner maximum PV currents

Maximum Current Rating of each		DCR-1500-500	DCR-1500-250
PV Input (Source) Circuit [Calculated per NEC 690.8(A)(1)]	Indiv Circuit Max Current	305 A	305 A

Once the string length and number of strings are determined, identify an appropriate remote combiner box (3rd party or Yaskawa Solectria Solar) and calculate the maximum current for the

IT'S PERSONAL

sub-array per combiner box. Then populate the combiner boxes as evenly as possible up to the maximum current, until all strings are used.

EXAMPLE

PVS-500 1MW DC STC 500kW AC Hanwha Q CELLS Q. PEAK DUO XL-G11.3BFG 570 (Bifacial Gain 10%) Mounting: Ground Low Temp: -14°C High Temp: 30°C

1. FIND STRING LENGTH OPTIONS

Perform the string sizing calculations either by hand, with an analysis tool or by using the Yaskawa Solectria Solar string sizing tool.

Project Specifications								Module Specification					
Module Manufacturer Module Model Design Temperature Find Temperature Mounting method Array STC Power Rai	Q.F Low weat	wha Q Cells EAK DUO XL-G1 Temp 14°C (7 ther.com AS und (temp rise of - 380 V kh	°F) ❤ High HRAE f 30°C)		°C (86 °F) ✔	~		4	45.63 0.1551	PTC [W] Isc [A] Voc(25°C) Voc Temp coeff. Coldest Day VO		469.5 12.28 53.63 0.1448 59.28	
		Inve	rter Selection					Electrical Service Specification					
P	SOLECTRIA:		Inverter V _{dc} max V _{dc} min [Max DC-		500 50				C Voltage 60	Three Phase	✓ V _{ac}		
* Please make sure ye ¹ * Estimated AC output pow ² * 1% DC wire loss included	ver .	nels are rated fo	r your current					✓ <u>I hav</u>	re read terms a	and agree	Show Re	sults	
				String		Solutions	(4 results)						
$\mathbf{v} P_{STC}[W_{DC}] \Leftrightarrow P_{F}$	PTC[WDC]	¹ *P _{AC} [W _{AC}]	🔷 Tot Mods	Strings	▼ Mods / String	² *VMP Hot	VMP Co	d 💠 VOC Cold	▲ DC-AC ra	atio Sugge	ested Inve	rters 🔮	
328636 28 320100 28	91560 39212 31700 31700	166000 limited 166000 limited 166000 limited 166000 limited	621 616 600 600	27 28 25 24	23 22 24 25	934 893 974 1015	1189 1137 1241 1292	1364 1305 1423 1482	2.00 1.98 1.93 1.93	(1) XGI 1 (1) XGI 1	1500-166/1 1500-166/1 1500-166/1 1500-166/1	66 🗎 66 🗎	

Figure 4 String Sizing Tool Results

After using the string sizing tool, some acceptable string length choices are

- 22 Mods/String,
- 23 Mods/String,
- 24 Mods/String, and
- 25 Mods/String.

The option of 25 modules per string has a warning because the VMP cold is 1292Vdc and is above the MPPT range of 1250Vdc, which means some derating would occur when above the 1250V MPPT upper limit:

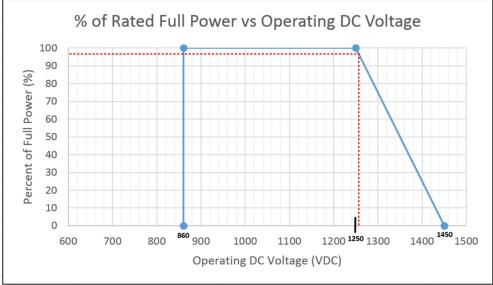


Figure 5 XGI 1500-166 inverter Derating with DC Voltage (XGI 1500 Manual)

However, it is 42 volts above the MPPT upper limit and for the location of this example, this would very likely be infrequent. In addition, as the modules begin to age and degrade, the module voltage will also begin to drop over time.

2. ITERATE TO FIND ACCEPTABLE ARRAY CONFIGURATION

Iterate through the different configurations of string length and number of strings to get the desired array power or number of modules but within the PV Input (Source) Circuit max current of the Re-Combiner. In order to simplify the analysis, the maximum string length of 25 modules was chosen.

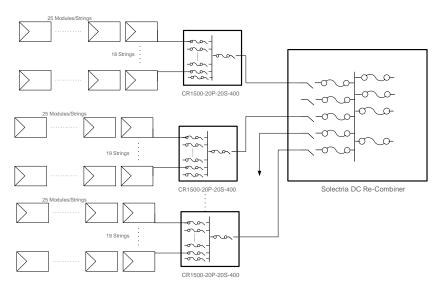
Table 2 Example Analysis of Possible String Configurations with 1MW STC Goal

	Mods/ string	# Total Strings for 1 MW STC	# Strings for Max Individual Current	Number of Combiner Boxes	Combiner Box with Most Strings	Array STC	Array PTC	# of Modules
# Strings Rounding Up	25	75	20	4	19.0	1000.3	880.3	1875
# Strings Rounding Down	25	74	19	4	19.0	987.0	868.6	1850

Twenty five modules per string and 75 strings total was chosen as the best option to meet the 1MW DC STC target.

3. SPECIFY REMOTE COMBINER BOXES AND LAYOUT

Yaskawa Solectria Solar provides optional remote combiner boxes (not required, 3rd party combiners are acceptable) with fuse ratings from 20A-32A and with 16, 20, 24, or 28 positions. The module has an Isc of 12.28A and requires a 20A fuse.


The system total maximum current, I_{max} , would be 1,151.25 A, using the NEC 690.8(A)(1)(a)(1) method (lsc x 1.25). For the proposed array size, the DC Re-Combiner needs to be evaluated for the minimum number of remote combiners so as to not exceed the maximum PV Input (Source) Circuit max current allowable of 305 A.

$\frac{1,151.25 \ A}{5 \ Combiners}$ = 230.25 A per circuit \checkmark
$\frac{1,151.25 A}{4 Combiners} = 287.8 A \text{ per circuit }\checkmark$
$\frac{1,151.25 \ A}{3 \ Combiners}$ = 383.8 A per circuit X

Four or five remote combiner boxes should be used, with a number of strings per combiner box in the range of 15-19 strings. Distributing the strings evenly between four combiners would result in an average of 18.75 strings per combiner. Four CR1500-20P-20S-400 remote combiner boxes could be considered.

This would provide a total of 80 positions and enough positions to combine the 75 strings and be below the max current per individual circuit.

Distribute the strings evenly between the combiners and ensure that the max current output does not exceed the individual circuit maximum. This example project distributed the strings with 19 strings for three combiner boxes and one at 18 strings. The worst case would be 19 strings in the single combiner box. Calculate to ensure this is below the maximum PV Input (Source) Circuit max current allowable per Table 1.

12.25 * 1.25 * 19 = 290.9 A per circuit < 305 A max 🗸

Figure 6 Remote Combiner Configuration

4. RESULTS

Results show a 1000.3 kW DC STC PV array with 25 modules per string and 75 strings total distributed among four CR1500-20P-20S-400 combiner boxes.

IT'S PERSONAL